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7 Asymmetrical Bending 
 

Learning Summary 

By the end of this section you should have learnt, 

1. Know that an asymmetric cross-section, in addition to its 2nd moments of area 

about the x and y axes, Ix and Iy, possesses a geometric quantity called the Product 

Moment of Area, Ixy, with respect to these axes (knowledge); 

2. Be able to calculate the 2nd moments of area and the product moment of area about 

a convenient set of axes (application); 

3. Know that an asymmetric section will have a set of axes at some orientation for 

which the product moment of area is zero and that these axes are called the 

Principal Axes (knowledge); 

4. Know that the 2nd moments of area about the principal axes are called the principal 

2nd moments of area (knowledge); 

5. Be able how to determine the 2nd moments of area and the product moment of area 

about any oriented set of axes, including the principal axes, using a Mohr’s circle 

construction (application); 

6. Understand that it is convenient to analyses the bending of a beam with an 

asymmetric section by resolving bending moments onto the principal axes of the 

section (knowledge); 

7. Be able to follow a basic procedure for analysing the bending of a beam with an 

asymmetric cross-section (application). 

 

7.1 Introduction 

The beam bending equation, , has been derived and is generally used to 

determine stresses in a beam with a symmetrical cross-section. The symmetry is usually 

about an axis perpendicular to the neutral axis of the section. For a section where this 

symmetry does not apply, i.e. asymmetric sections, a complication arises, making bending 

analysis more difficult. In these cases, applying a bending moment will, in general, result 

not only in bending about that axis but also in simultaneous bending about the 
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perpendicular axis i.e. there is an interaction effect. To analyse such sections we 

introduce a new geometric quantity called the Product Moment of Area and this leads to 

the concept of Principal 2nd Moments of area and Principal Axes for the section. These 

are axes for which the Product Moment of area is zero and the above interaction effect 

during bending does not occur. Thus, it is convenient to analyse the bending of 

asymmetric sections about these axes. In this section, we will look at the theory behind 

this effect and develop a general procedure for dealing with asymmetrical bending 

situations.     

 

7.2 Second moments of area of a complex shaped cross-section 

7.2.1 2nd Moments of Area about Parallel Axes 

 

 

Figure 7.1. Arbitrarily shaped cross-section 

 

Consider an arbitrary shaped cross-section, as shown in Figure 7.1. The centroid of the 

area, C, is at the origin, O, of the O-x-y axes set. A parallel axes set, O’-x’-y’, also exists, 

distance a and b from the O-x-y axes set, as shown in the figure. The centroid of area, C, 

is positioned at co-ordinates (x’,y’) = (a,b) in this parallel axes set. 
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We know that the 2nd moments of area, Ix and Iy, of the section with respect to the x and 

y axes are given by, 

 and  

 

i.e. the product of an element of area, dA, and its distance squared from the particular 

axis (x or y), integrated over the full cross-sectional area, A. 

 

The Parallel Axis Theorem allows the calculation of the 2nd moments of area, 

, with respect to the x’ and y’ axes as follows, 

  [1] 

and 

  [2] 

 

are the 2nd moments of area about a set of axes through the centroid and are 

always the minimum 2nd moments.   will always be greater because the second 

terms in equations [1] and [2] are always positive as the distances between the axes, a 

and b, are squared. 

 

7.2.2 The Product Moment of Area 

We now introduce a new quantity, the product moment of area, Ixy , which is defined as, 

 

 

Ixy is the summation of the elements of area multiplied by the product of their co-ordinates. 

We can now develop the parallel axis theorem for the product moment of area as follows, 
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but,  and  are both zero because the origin of axes Oxy is at the centroid of 

area, C . Thus, 

  [3] 

 

This is the Product Parallel Axis Theorem. Again,  is the product moment of area 

about a set of axes through the centroid. In this case, , can be either positive or 

negative, depending on the signs of a and b. 

 

7.2.3 Principal 2nd Moments of Area 

Equations [1], [2] and [3] can be used to plot a Mohr’s circle as shown in Figure 7.2. 2nd 

moments are plotted on the x-axis and the product moments are plotted on the y-axis 

[note that the y-axis for the circle is positive upwards, unlike Mohr’s circle for stress which 

is positive downwards for shear]. 

 

 

Figure 7.2. Mohr’s Circle 
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Point A on the circle has co-ordinates which correspond to the first 2nd moment and the 

product moment, i.e.  (Ix, Ixy). Point B on the circle has co-ordinates which correspond to 

the second 2nd moment and the negative product moment, i.e.  (Iy, Iyx=-Ixy). These two 

points enable the circle to be drawn. 

 

The centre of the circle, C, and radius, R, are given by, 

 
 

[4] 

and 

 
 

[5] 

 

The points P and Q on the circle correspond to the Principal Planes for which the product 

moment of areas are zero and the 2nd moments are the Principal 2nd Moments of Area, 

IP and IQ. Their magnitudes are given by, 

IP = Centre + Radius 

and 

IQ = Centre – Radius 

where the centre and radius are given by equations [4] and [5]. 

 

Thus knowing Ix, Iy and Ixy, The principal 2nd moments of area, IP and IQ, can be 

determined.  

 

The angle of the principal axes with respect to the x-y axes is the angle θ, where 2θ is 

shown in Figure 7.2 and is given by, 
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or alternatively  

 

7.3 Symmetric Sections 

 

Figure 7.3. Symmetric section 

 

Figure 7.3 shows a section where one axis (the y-axis in this case) is an axis of symmetry. 

The sum of the contributions to the product moment of area from elements of area, dA, 

on opposite sides of the axis of symmetry will cancel out because of the change of sign 

of the x co-ordinate. Thus, in general, if a section has an axis of symmetry, then Ixy is zero. 

 

7.4 Key points about the Mohr’s circle for 2nd moments of area 

1. The +ve upward direction for the product moment ensures that rotation in the 

Mohr’s circle has the same sense as the rotation of the axes in space. 

2. IP and IQ are both +ve. 

3. If IP = IQ, all product moments are zero and all axes in all directions are principal 

axes e.g. this is the case for a circular section. 
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4. The sign of the product moment is important. Ixy =  is associated with the x-

axis and can be +ve or –ve. The product moment associated with the y-axis is Iyx 

= -Ixy. 

 

7.5 Summary of procedure to calculate the Principal 2nd Moments of Area and the 
directions of the Principal Axes 

1. Divide the cross-section into subsections for which their centroid of areas and 2nd 

moments of area about their own axes can be determined. 

2. Choose a convenient set of orthogonal axes with its origin at the centroid of the full 

cross-section. 

3. Use the parallel axis theorem to determine the 2nd moments of area and the product 

moment of area for the full cross-section. 

4. Use a Mohr’s circle construction to determine the Principal 2nd Moments of Area 

and the directions of the Principal Axes. 
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7.6 Worked Example – Principal 2nd Moments of Area 

 

Figure 7.4. Worked example cross-section 

 

Figure 7.4 shows an asymmetric angle cross-section. Determine: 

(a) the Principal 2nd Moments of Area 

(b) the directions of the Principal Axes 

 

The section is divided into two rectangular subsections 1 and 2. 

 

Position of the Centroid: 

Total Area = 51x10 + 54x10 = 1050 mm2 

 

Taking moments of the areas about the datum AA, 
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Taking moments of the areas about the datum BB, 

 

 

2nd Moments of Area about a convenient set of axes: 

The x and y axes are drawn as a convenient set of axes through the centroid.  

Using the parallel axis theorem, 

 

 

 

 

And the product parallel axis theorem, 

 

 

Note that, in the product moment of area calculation above, the product moment of each 

subsection about its own axis is zero due to the symmetry of each subsection. It is also 

important that the correct sign for the co-ordinates of each subsection centroid with 

respect to the full cross-section centroid are taken. Thus, for subsection 1, the co-

ordinates are both positive (10.54 and 16.46), while for subsection 2, they are both 

negative (-9.96 and -15.54). 
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Mohr’s Circle:   

A Mohr’s circle can now be drawn to represent the axes about which Ix’, Iy’ and Ix’y’ act, as 

shown in Figure 7.5. The centre and radius are calculated as follows, 

    

 

    

 

 

Figure 7.5. Worked example Mohr’s circle 

 

Principal 2nd Moments of area: 

The principal 2nd moments of area can now be determined from the circle as follows, 

IP = C + R = 508, 554 mm4 

IQ = C - R = 120, 764 mm4 

and the angle, θ, of the principal axes with respect to the x-axis is given by, 
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From the Mohr’s circle it can be seen that the principal axis 1 i.e. the p-axis is 31.27° 

clockwise from the x-axis. The principal axes can now be drawn on a sketch of the element 

as shown in Figure 7.6. 

 

Figure 7.6. Worked example schematic solution 

 

7.7 Bending of beams with asymmetric sections 

Figure 7.7 shows an arbitrary cross-section of a beam subjected to a bending moment, 

M, acting at an angle θ to the x-axis. The origin of the x-y axes coincides with the centroid 

of the section. The bending moment has two components, Mx and My, as shown, acting 

about the x-axis and y-axis respectively. [note that the bending moment and its 

components are drawn in vector form with a double arrow head. The right hand screw 

rule defines the sense of each bending moment component as shown in the figure] 

 

Assume that bending takes place only about the x-axis i.e. O-x is the neutral axis. Then, 

the bending stress, σ, is proportional to the distance, y, from the neutral axis, or 

alternatively, 

σ = c.y 

where c is an arbitrary constant 
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Figure 7.7. Arbitrary cross-section of a beam subjected to a bending moment, M 

 

The resultant moment about the x-axis is given by the sum of moments of the forces acting 

on each elemental area in the cross-section. In the limit, this sum can be written as an 

integral as follows, 

 

  [6] 

where Ix = 2nd moment of area about the x-axis 

 

But  c = σ/y  

 

which is the beam bending equation as expected.  
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  [7] 

where  is the Product Moment of Area 

[note the –ve sign arising because a positive stress results in a –ve moment about the y-

axis] 

 

Thus, in general, a moment has to be applied about the y-axis as well as the x-axis to 

produce bending about the x-axis only. A +ve moment is required about the y-axis to 

counterbalance the –ve moment set up by the stresses arising from Mx. This is not the 

case if Ixy is zero i.e. for sections which are symmetric about the y-axis. 

 

To ensure bending about the x-axis only, a resultant moment  must be 

applied at an angle, θ, given by, 

 

 (from equations [6] and [7]) 

 

The moment is only applied about the x-axis when Ixy=0. 

 

Figure 7.8 illustrates the effect for a z-section. If a bending moment is applied about the 

x-axis only, then the stresses in the flanges will create a resulting moment about the y-

axis. Consequently, bending will take place about both the x- and y- axes. This is a 

consequence of Ixy not being zero for this asymmetric section. 
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Figure 7.8. Z-section diagram 

 

To avoid this moment coupling effect, it is usually convenient to solve bending problems 

by considering bending about the Principal Axes of a section for which the Product 
Moment of Area is zero. 

 

7.8 Solving asymmetrical bending problems 

Consider the arbitrary asymmetric section shown in Figure 7.9(a). O is the centroid and 

O-P and O-Q are the Principal Axes of the section. The principal axes are inclined at an 

angle θ to the x-y axes. Components of an applied moment M, i.e. Mx and My, act about 

the O-x and O-y axes respectively. Firstly, Mx and My are resolved onto the principal 

directions, as illustrated in Figure 7.9(b), giving, 

MP = Mxcosθ + Mysinθ     and     MQ = -Mxsinθ + Mycosθ 
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Figure 7.9. Arbitrary section and principal axes 

 

We can now calculate the total bending stress, σb, at any position, (P, Q), which arises 

from these two bending moment components and is given by,   

 
 

[8] 

[note that when P and Q are both +ve, i.e. in the first quadrant of the P-Q axes set, a +ve 

MP gives rise to a +ve bending stress while a +ve MQ gives rise to a –ve bending stress] 

 

The maximum stress in the section will occur at the extreme distance from the Neutral 
Axis. We therefore need to determine the position/orientation of the neutral axis which 

can be found by setting the bending stress, i.e. equation [8], to zero. Thus, the neutral 

axis occurs where, 
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This value for q/p defines the angle, α, of the neutral axis, with respect to the p-axis, 

shown in Figure 7.9(a), as follows, 

 
 

[9] 

 

Equation [8] can therefore be used to determine the magnitude of the stress at any 

position (p,q) and equation [9] can be used to determine the orientation of the neutral axis 

and hence the position of the maximum stress which is at the extreme distance from the 

neutral axis.   

 

7.9 Summary of the procedure for solving asymmetrical bending problems 

1. Determine the Principal Axes of the section, P and Q, about which Ixy = 0. 

2. Consider bending about the principal axes, i.e. resolve bending moments onto 

these axes. 

3. Knowing MP, MQ, IP and IQ, determine the general expression for the bending stress 

at position (P, Q) as follows, 

 

4. Determine the angle of the neutral axis with respect to the P-axis as follows, 

 

5. Evaluate the bending stress at any position in the section including the extreme 

positions from the neutral axis which give the maximum bending stresses. 

 

7.10 Worked Example – Asymmetrical Bending 
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Figure 7.10. Worked example cross-section 

 

The angle section, shown in Figure 7.10, with principal axes and principal 2nd moments of 

area indicated, is subjected to a bending moment of 300Nm about the x-axis. Determine: 

(i)  the position/orientation of the  neutral axis 

(ii) the bending stresses at positions a, b and c 

 

Resolving the applied moment: 

 

Figure 7.11. Components of applied bending 

Referring to Figure 7.11(a), the components of the applied bending in the p and q 

directions are, 
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MP = Mcos(31.27) = 0.855M 

MQ = Msin(31.27)  = 0.519M 

 

The general expression for bending stress at position (p,q) is, 

 

 

Note that for P and Q in mm, this expression gives bending stress in N/mm2 i.e. MPa. 

 

Orientation of the neutral axis, α, with respect to the P-axis: 

 

 

Orientation of the neutral axis with respect to the x-axis = 68.64 – 31.27 = 37.37°. These 

orientations are illustrated in Figure 7.10. 

 

Bending stresses: 

To determine the bending stresses at a, B and c, we need the P and Q co-ordinates of 

these points. Referring to Figure 7.11, the general co-ordinate transformation equations 

for a set of axes, P-Q, inclined at a clockwise angle, θ, from another set, x-y, are (as 

shown in Figure 7.12), 

P = xcosθ - ysinθ     and     Q = xsinθ + ycosθ 
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Figure 7.12. Transformation from axis set x-y to axis set P-Q 

 

For this problem, the P-axis is inclined at 31.27° clockwise to the x-axis. Thus,  

θ = 31.27° and the above transformation equations become, 

P = 0.8557x – 0.5191y     and     Q = 0.5191x + 0.8547y 

 

We can now draw a table for calculating the co-ordinates of A, B and C as follows, 

Position x y p q 

a -14.96 21.46 -23.92 10.88 

b 36.04 21.46 19.66 37.05 

c -14.96 -42.54 9.3 -44.12 

 

and the stresses follow from the general equation , as follows, 

at a:  σa = 36.33MPa 

at b:  σb = - 6.67MPa 

at c:  σc = - 34.24MPa 
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